NASA
CR
2994
c.1
NASA Contractor Report 2994 .
o= =
[oaN Co E% 3
KIRTLAND:ARR TN = =
—=
Application of Second-Order
~ Turbulent Modeling to the Prediction
of Radiated Aerodynamic Sound
Alan J. Bilanin and Joel E. Hirsh
CONTRACT NAS2-8832
JUNE 1978
.’./.f\\;
2
A
o

N
’ . LN _\_aC‘
SRR \ DNl



TECH LIBRARY KAFB, NM

L

00bL594
NASA Contractor Report 2994

Application of Second-Order
Turbulent Modeling to the Prediction
of Radiated Aerodynamic Sound

Alan ]J. Bilanin and Joel E. Hirsh
Aeronautical Research Associates of Princeton, Inc.
Princeton, New Jersey

Prepared for
Ames Research Center
under Contract NAS2-8832

NNASN

National Aeronautics
and Space Administration

Scientific and Technical
Information Office

1978



APPLICATION OF SECOND-ORDER TURBULENT
MODELING TO THE PREDICTION OF RADIATED
AERODYNAMIC SOUND

Alan J. Bilanin and Joel E. Hirsh

Aeronautical Research Assoclates of Princeton, Inc.
50 Washington Road, Princeton, New Jersey 08540

SUMMARY

Current formulations of the generation of aerodynamic sound
by turbulence all require statistical information with regard to
the turbulent flowfield. Second-order closure turbulent modeling
inn 1ts present form 1s shown to provide some of thils statistical
information.

The Ribner! formulation of the generation of aerodynamic
sound 1s coupled with predictions of second-order velocity corre-
lations and integral scale to estimate the sound radiated from
several complicated jet flows. In particular, it 1is shown that
the sound radiated from a cold swilrling Jjet 1s greater than from
1ts nonswirling equal thrust counterpart.

The nolse radiated from the flowfield of a multitube suppres-
sor 1s estimated and compared with an equal thrust equal diameter
Gausslan jet. It 1s shown that the multlitube concept 1is indeed
gquieter.

I. INTRODUCTION

This report describes an attempt to develop the technology
requlred to predict the aerodynamic nolse radiated from general
turbulent flowfields. It is but a first attempt at an admittedly
very difficuit problem. The difficulties are associated with our
guite limited description of turbulence. Nevertheless, 1t 1s shown
that advanced turbulent transport theory, namely second-order
closure turbulence theory, does indeed provide new insight into
the aerodynamic sound generatlon problem. It is also suggested
that second-order closure modeling does provide a framework or
backbone upon which can be bullt a more complete turbulence theory,
which 1s directly sulted to be coupled with accepted formulations
of the aerodynamic generation problem. The most popular of these
are the theories of Ribner,! Lighthill,? Lilley® and most recently
that of Yates.

What 1s offered by second-order closure turbulence theory is
a method of computing certain statistical turbulent quantities



under fairly general circumstances. A deficlency, in our opinion,
of several models currently belng used to estimate the sound
radiated from a turbulent jet, 1s that the model utilizes turbulent
assumptions or methodology which are only applicable to one fluid
geometry, namely a jet. The introduction of other jets, heat or
swirl, may result iIn the modification of the turbulence and, there-
by, make predictions from these models of limited usefulness. It
is for this reason that a truly uniform and general approach to
computation of turbulent transport and resulting generation of
aerodynamic sound is sought.

This report is organized as follows. In Section II, we argue
why at least a second-order closure turbulence theory 1s needed
to compute turbulent quantities to be utilized to estimate the
aerodynamic generation of sound. In Sectlon III, we show some pre-
dictions of turbulent properties made by second-order closure theory
and comparison with data. A simple acoustic model suggested by
Ribner! is reviewed in Section IV, and modifications and assumptlons
required to utilize predilctlons made from second-order closure
theory are detalled. In Section V, predlctions of the noise radi-
ated in cold jets are given. Included here are predictions for
Jets which have swirl as well as a multitube jet configuration.
The effect of heat and swirl on turbulent jet structures is inves-
tigated in Section VI. Finally in Section VII, conclusions are
offered.

NOMENCLATURE
a, reference speed of sound
A axial parameter, see Eq. (1l4)
b turbulent model constant
D Jet diameter
N swirl parameter, see Eq. (14)
P acoustic power radiated 1n the ¢ direction per unit solid
angle
q r.m.s. turbulence level, \ﬁzggg
r,0,z circular cylindrical coordinate system
t time
Ui velocity components 1n a Cartesian coordinate system

u,v,w velocity components in a r,6,z coordinate system

r radius of primary Jet



Vo turbulent model constant

Xy Cartesian coordinates

o swirl angle

o] density

™ pressure

v kinematlic viscosity

A turbulent integral scale parameter

II. SECOND-ORDER CLOSURE TURBULENT TRANSPORT
THEORY (INCOMPRESSIBLE FLOW)

Second-order turbulent closure theory is a model by which_one
can compute the ensemble average mean components of velocity _Ujs ,
as well as the second-order turbulent veloclity correlations ujuy .
The derivation of the second-order closure model 1s stralghtforward
and is detalled briefly below.

The dynamics of an incompresslble fluld are governed by the
continulty equation and the momentum equations
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Assuming the velocitles and pressure can be split as the sum of
an ensemble average mean and a fluctuation

Ui = ﬁi + ujy
(3)

T=T+p!'

there results upon substitution into Egs. (1) and (2) and ensemble
averaging
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equations for the mean veloclty and pressure. The momentum equa-
tions, however, contain unknown second-order velocity correlations
‘known as Reynolds stresses -ulul} . Solution of Egs. (4) and (5)
cannot be attempted until a specification of u}uj is made. The
essence of first-order closure, K theory or eddy viscosity theory
is an attempt to specify u'u' as a functilon of mean flow gradi-
ents and mean flow length scaies

Second-order closure theory derilves independent equations for
these second-order velocity correlations. The procedure for doing
this is as follows. The splitting of variables into mean and
fluctuation is substituted into Eq. (2),and Eq. (5) is subtracted
from this result. The remainder is then multiplied by . and
ensemble averaged. The above procedure is then repeated inter—
changing 1 for j and then it can be shown that the second-
order velocity correlations must satisfy

3T 3T,
) Ty = ] J i
= U, =— ulu! = - ulul - uluy! —
ot j k Bxk i7j] . i’k axk J'k xk/
production
dulp  au!
- _3_ (u'u'u’) - .]_-_ ip + ujp
9X k1) p \9X, 39X
k J i,
- el
velocity and pressure
diffusion
Bzuiu' ' Bui au!
+ v + R L
5 2 p\ox, 90X
Xy J i
| \ /
viscous pressure strain
diffusion correlation
du. aJu.
- 2V a__l. .a_.sl.
Tk Tk
o -
dissipation (6)

Note now that there appears third-order and some second-
order correlations which themselves need independent equations. In
principle thilrd-order correlation equations could be developed but
the spirit of second-order closure is to model these third-order



and second-order correlations 1n terms of known second-order
correlations. The success of the second-order theory is dependent
upon two assumptilons:

1. The Reynolds stress equations are not extremely sensi-
: tive to inaccuracies introduced by the replacement of
exact terms with modeled ones.

2. Reasonable physically motivated models can be developed
for the terms which must be replaced.

These assumption are apparently Justified, since 1t has been
demonstrated over the years that the second-order closure model
has predilcted turbulent transport in a variety of high Reynolds
number flowfilelds. The details of the modeling as well as compar-
isons of the turbulent model with data may be found 1in Ref. 5.
Here, we simply give the terms to be modeled and the terms which
replace them.

Pressure -~ velocity diffusion

TS ITRETY aulu!
3 ———r 1 Buip dulp 3 173
- ukp u3 - 5 (axj + axi =V, 3% gh (7)

k
where v has been determined to be 0.3, q = uju} and A 1is
the turbfilent macroscale or integral scale variable.

Pressure straln correlation

ou! ou! 2
p' (71, ) - QT qa_
0 (8xj * axi> A (uiuj %13 3) (8)

where thils term contains the mechanlsms by which the energy com-
ponents attempt to redistribute energy between themselves.

Dissipation
su! 3u 3
-\)._i._.l=6 Eg_
X, 9% 1 3A (9)

where b has been determined to be equal to 0.125. The dissipa-
tion here is for high Reynolds numbers and is assumed to be 1so-
tropic. Upon substitution of these modeled terms the equations
governing the dynamics of the second-order correlatlons become
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The turbulent integral scale parameter A 1s determined from

39

oA = 3A A 1
=+ U +=—=-1.8 =5 u,u, —= + 0.6 g
3 k X, q2 17k Bxk
9 A 0.375 [2gA .
* Ve IX (qA axk> - .q ( xk> (11)

The details of the derivation of this relatlionship is given in
Ref. 5.

Equations (4), (5), (10) and (11) along with appropriate
boundary conditilons are then solved numerically for the quantities
Ui ’ uiuj and A

Before proceeding to obtain solutions for turbulent flowfields
relevant to the aerodynamic sound generation problem, we can show
that second-order closure turbulent modeling does contain physics
that might be lost in K or eddy viscosity theories. We do this
by asking if second-order closure can be simplified under some
limiting process to define an eddy viscosity model. The conditions
under which an eddy viscosity can be expected to be vallid have been
argued by Donaldson.® Briefly, eddy viscosity concepts are re-
stricted to high Reynolds number flows, where second-order correl-
ations can track their equilibrium values, and the effects of dif-
fusion of correlations can be neglected. If we now consider a
nonspreading cylindrical jet with swirl, where the coordinates are
r,0,z_ with velocity components wu,v,w , with U =0 , V = V()
and W = W(r) and take the high Reynolds number, nondiffusive
superequilibrium limit of Eq. (10), there results
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where V = V(r)/r , W = W(r)/r , Uw = uw/r and %% = vw/r .
Assume the veloclty correlations are of the form

2 vy 2
usuy; = A (r ?F) Uy Uy (13)

where U,U is a dimensionless number (turbulent correlation
coeffici%né).Then, substituting into Eq. (12) yilelds a nonlinear
system of algebralc equations for UiUJ . The solution of this
system is dependent upon two parameters

N = —;!f:— the swirl parameter
(X
or

W
A = (—QE:— the axlal parameter
av)

r -B_I‘ (14)

Solutions for @QQ = U4U; are shown in Fig. 1. Values of QQ < O
denote regions where turbulsnce 1g damped. With no swirl , N = 0O
and it may be shown that q< = 2A (3W/3r)2 and, therefore, axial
shear 1s always destabilizing. This analysis’has been used pre-
viously to explain the lamlnar central reglon in aircraft vortices.
It has been shown that the swilrl can in fact suppress the produc-
tion of turbulence in the viscous core, thereby reduclng the dis-
persal of smoke which 1s seeded into the vortex for visualization
purposes.

As can be seen, the turbulent velocity correlation coefficient
which 1s related to the eddy viscoslity has a strong dependence on
the parameters A and N which in turn are functions of mean flow
gradients. It would appear unllkely that the functional form of
an eddy viscosity could be chosen to include flow stability without
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N = V/(r ﬁ) and A = —/( ar) (Ref. 7)
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resorting to a second-order closure model initially. It is to be
expected, based on the results shown in Fig. 1, that when swirl
is added to a Jet significant changes in Jet structure will result.

Second-order turbulent modeling provides a method to compute
the evolution of turbulent flowfields. Flow variables which are
obtalned are the mean velocity components as well as the second-
order velocity correlations and the turbulent macroscale parameter
A . In the next section, we will show a comparison between pre-
dictions made by the second—order closure model and measured tur-
bulent data.

IIT. COMPARISON WITH JET DATA

Over the years several computer codes have been developed to
solve the second-order closure model equations for various flow
geometries. Here, we will present results from TDV (three-dimen-
sional vortex) a code developed by Sullivan® to compute the decay
of an axisymmetric vortex. The streamwise direction is =z which
is the marching direction,and r 1s the radial coordinate. We
wlll use the code to predict the evolution of an axisymmetrlc tur-
bulent jet and make comparisons with Wygnanski and Fiedler® data.

At 2z = 0 the axial velocity profile was taken to be a
Gaussian and the code was run with the axial velocity held fixed
until the second-order velocity correlations establish themselves.
The integral scale parameter A was taken to be constant during
this time. The mean variables were then unlocked and solutions
were computed to 112 diameters downstream. Figures 2-7 display
second-order closure results compared with Wygnanski and Fledler
data and other theoretical results.

The mean axial veloclty distribution across the jet is shown
in Fig. 2, at 2z = U2 and 57 diameters downstream of the nozzle.
The Wygnanski and Fiedler data 1is presented as a composite of this
data at z = 40, 50 and 60 diameters, since all of this data falls
on the same so0lid curve. The velocity scale in this figure is the
maximum axial veloclity in each axial station and the abscissa is
the distance from the axis of symmetry normalized by the distance
from the nozzle. The agreement with the Wygnanskl and Fielder
data is excellent except at values of r/z > 0.15 . This error is
due to the fact that the computational procedure requires that the
solution asymtote to a small but finite value of W as r > = ,
In the calculation shown in Filg. 2, this value was taken to be
W/Wpaye (2 = 0) = 0.005 . A calculation with W/Wyy, (z = 0)
asymp%oting to 0.02 as r - « gave an error approxfmately four
times as large for =r/z > 0.15 but excellent agreement for r/z <
0.15

The variation of the filelds with downstream distance is
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shown in Fig. 3. Again, the theoretical results are in good
agreement with the data.

Figures 4-7 display the radial distribution of the varilous
turbulent intensities at various stations downstream. In addition,
Fig. 4 displays measurements of Corrsin and Uberoil? at z/D = 20 .
Wygnanskl and Fledler attribute the 25% disagreement between thelr
measurements and Corrsin and Uberois to: (1) the fact that at
z/D = 20 the flow was not yet self-preserving,and (11) the poorer
response of the equipment used by Corrsin. The results of the pre-
sent study are 1in significantly better agreement with those of
Wygnanski and Fiedler in the midrange of r/z . For r/z > 0.15 ,
the maJor part of the dlsagreement is most likely due to the as-
ymptotlic condition on W as discussed above.

In general, model predictions at least for this simple flow-
field are in general agreement with measured data. Additional com-
parisons may be found in Ref. 5.

IV. COUPLING TURBULENT JET STRUCTURE
TO AN ACOUSTIC MODEL

We have chosen to use the Rlbner and equlvalent Lighthill for-
mulation which models the sound radiated from a turbulent flow.
Other competlng models exist and our choice has been made solely
on the grounds that the formalism behind this model 1s generally
understood in the acoustic community.

The acoustic power radiated in the ¢ direction per unit
solid angle from an elemental volume of turbulence located at y
is

4 ->
P(¢,y) - % SIB 1 RX(¢’—§’€’T) dE
16w poao ot (15)

where

—2

2
Rx(¢,§,E,T) = p [uxu}'{2

, ——
+ llUxUx uxui + other terms] (16)

U 1s the time mean velocity component in the X direction and
uy 1is §he luctuating component. The primed varlables denote the
Qoin% at time t and the unprimed denoctes the point

/2 at time t + T . The omitted terms are argued to be
either zero upon tlime differentiation or small. At this point,
Ribner introduced the assumptlons of lsotropy and homogeneity of
turbulence within a correlation volume in order to make further
progress. These assumptions are not necessary, however, since

11
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Figure 3. Variation of mean axlal veloclty and turbulent
intensities along the jet. Wygnanskl & Fledler
data: single data points, present study: solid
line



Figure 4.

r/z

Intensity of Vw'z fluctuation across the jet.
--- , Corrsin, 2z/D =20 ; —— Wygnanski &

Fiedler composite data z/D = 50 , 60 , 75 ;
-:~.- ; present study z/D = 57 , 112
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Figure 5. Intensity of Vv'  across the jet. Wygnanski &
Fledler data: single points. Present study:
solid 1ine
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Figure 6.
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3 W & F Data

2/D = - A z2/D=50
0 z/D=60
.2 © z/D=75

r/z

Figure 7. Intensity of w'v' across the jet. Wygnanskl &
Fledley data: single polints. Present study:
solid line



second~order closure modeling predicts both arnisotropy and inhomo-
genelty. At thils point, however, we have chosen not to alter the
basic Ribner analysis, so that the acoustic model will remain simple.
It is suggested, however, that future efforts should utilize the
full power of second-order closure. Requiring that the Joint pro-
bability density 1s Gausslan ylelds that

2 2

2 .

u_u

1
X

where Rjp = ujzul = ujuj . Utillizing results from the isotropic
theory of turbulence, 1t was suggested that

Ry(E,1) = u? [1 - n6/0% + (ng2/0%)] exp(-mE°/L% - w 1)

where A 1s the integral scale length of the turbulence and Wo
is the inverse turbulent correlation time scale. Substituting
Ry into (17), and (17) into (15) yields

3 4
A w ~—3/2 2
P(6,5) = 5 [é Yode oy d

W —%-(cos2¢ + cosu¢)]' C

p g a F)

T po25

(19)

after garrying out the time differentiation and the integration
over ¢ and setting T =0 . Also, we have approximated

2,> oW ’ 2 2
U U! = Wi(y) + W == E- + &
X X ar y 2 3 (20)

The convective factor C 1is given by

- 2,2 -5/2
wahA
C = [Fl - g— coscb)2 + f2 .]
o) UEDN

(21)

and has been added by Ribner after the fact to account for the eddy
motion down the jet. The equation is yet to be integrated over

¥ . This is accomplished numerically in our turbulent code. What
remains to be done is to argue the functlional form of w, . Second-
order closure in its present form makes no direct predictgon of W
but we argue that the turbulent correlation time scale should be
proportional to L/g where L 1s a characteristic turbulent scale.
We, therefore, assume

wp = L/q (22)

17



Now L 1is taken to be proportional to our turbulent macroscale
parameter A so that L = kA

Qur strategy now 1s to determine k from data and then use
Eq. (19) to make predictions of sound power radiated for more
complicated flowfields. We have chosen to use Lush!! data to make
this calibration. Shown in Fig. 8, is a comparison of directivity
as a function of emission angle for three jet velocilties. It 1is
suggested that k = 0.5 gives a best fit to the data. One does
expect, as a consequence of the incompressible turbulence model
and assumptions implicit 1n the acoustic model, that discrepancies
will occur as jet Mach number approaches one from below. We have,
therefore, bliased our selectlon of k to gilve better agreement at
the lower Jet velocities. Equation (19) with the second-order
closure model will now be used to make predictions of directivity
and total sound power radlated from more complicated Jet flowfields.

V. NOISE ESTIMATES FROM COLD JETS

In this section the noise radiated from several cold jets are
estimated using the models described in Sections ITI and III.

Recently Lu, Ramsay and Miller!? have made measurements of
the nolse radiated from a swirled and nonswirled model jet. We
have attempted to numerically simulate their experiment and predict
the total sound power radiated. In Fig. 9 is shown the measured
swirl angle as a function of radius as well as the measured velo-
city profile at 2 jet dlameters downstream. The dashed curves are
the predicted distributlons. Unfortunately, Lu et al. have not
presented any measurements made further downstream. To make this
comparison we have run TDV in a pipe, so that the initial condi-
tions at 2z/D; = 0 are those appropriate to a fully developed
pipe flow. Tgen this mean velocity axial distribution was altered

by

W = cosa W (r)

pipe
V = 2
V = sina wpipe(r) (23)
where o 1is the swirl angle measured at 2z = 0 . The predicted

profiles are shown in Fig. 10. We also present the results of the
calculation where the mean axial flow was not swirled in Fig. 11.
One obvious difference 1s the rate of decay of the maximum

axial velocity as a function of downstream distance. This varia-
tion is shown plotted in Fig. 12. 1In general, it is also shown
that the turbulent kinetic energy at equal downstream stations is
higher in the jet which is swirled. This, cf course, explains the
more rapld aging of the swirled vs. the nonswirled case. We have
estimated the thrust loss in the swirle: case to be about 3%.

18
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Figure 9a. Measured and Predicted Swirl Angle




1.5¢

I.0F
r/rj
5 Measured
— — — Predicted
z/D=2
0 | I I l
0] 6 8 1.0

.2 4 . .
SVEWA/ VWt

Figure 9b. Measured and predicted total veloclty
distribution

21



N
~N
q

CNJSCNRJ"C)J

oHN—
QOONMO

W/ Wimox

r/rj

Figure 10a. Predicted axial velocity profiles in the
Lu, et 2l model swirled Jjet

22




'S -

-4.+

4

r/rj

Figure 10b. Predicted swirl velocity profiles in the
Lu, et al model swirled Jet. Curve labels
same as Fig. 10a

23



Jmax

u'u’/ W,

05 _

04 1
03] |
.02 e
IF\
(4
1
01 L 3
]2
(/]
5"3-\3 2
| — 4 —4
0 M m—r — -
0 2 4 = 10
r/rj

Figure 10c.

24

Predicted u'u' correlation in the Lu, et al
model swirled Jet. Curve labels same as Fig.

10a



.04 -
(<]
x .03}
~ . E
=
NS
>
|‘> .02 -+
]
N\
z 1
01 |
242
.—3—"3-\3 2
s — 4 i~
0 ‘.M
0 2 4 S 8
r/rj
Figure 10d. Predicted v'v' correlation in Lu, et al model

swirled Jjet. Curve labels same as Fig. 10a

10



4.

l08 L o
o 061
~ E
=
™
z
| ; -04 -

02l |/

Figure 1l0e.

26

o
———t
(W)

2 4 6
r/rj

Predicted w'w' correlation in the Lu, et al
model swirled jet. Curve labels same as in Fig.
10a




pat]

-8 +

-6 1

i\"l'
\

4 1

Figure 10f.

ot
fre
(=)

3

NT
IS

r/rj

Predicted turbulent integral scale parameter A
in the Lu, et al model swirled jet. Curve labels
same as in Fig. 10a

27



5

-4 1

3 1

Jmax

q/ W;
~

2 4

o 3~
L#ﬁ’ 3l

0

Figure 10g. Predicted turbulent intensity in the Lu, et al
model swirled jet. Curve labels same as in Fig.
10a

28



z/rj-

12
20
40
80

Imax
u\.p.ou\:-o‘

W/ W;

0L i "‘1é£==;f\~“‘— - hd—

r/rj

Figure 1lla. Predicted axlal velocity profiles in Lu, et al
model swirled jet (no swirl)_

29



05

04 |

.01

m.
H- 3
(@)

5 5 7 5
r/rj

Figure 11b. Predicted u'u' correlation in the Lu, et al model
swirled jet (no swirl). Curve labels same as in
Filg. 1lla :

30




05

0 2 4 B 8 10
r/r i

Figure llc. Predicted v'v' correlation in the Lu, et al model

swirled Jjet (no swirl). Curve labels same as in
Fig. 1lla :

31



32

-1

T

-08 .1-

Figure 11d.

8 10

Predicted w'w' correlation in th e Lu, et al model
swirled jet (no swirl). Curve labels same as in
Fig. 11la



1.
BJ 4 4 4
4
. . . /
6 1
3 3 33— .
S //__
~ 2 2—
< _4 1 /3..._-/3
\3./3
221 —1—
N, 27 //
N — .
2 \ 7
oi/
1] .
0 \ + : : : 4
D 2 4 6 8 1
r/rj
Figure lle. Predicted turbulent integral scale parameter A

in the Lu, et al model swirled jet (no swirl).
Curve labels same as in Fig. 1lla

33



34

S

-4_

-3 .

imax

Figure 11f.

Predicted turbulent intensity in the Lu, et al
model swirled jet (no swirl). Curve labels same
as in Filg. 1lla




-

W/ W,

Swirl N

.2L = —— No swirl

oL I 1
| 10

z/rj

Figure 12. Predicted decay of centerline axial velocity

35



In Fig. 13, we have shown the computed directivity for the
swirled and nonswirled jet for pressure ratio equal to 1.2 (thrust
estimated to be 33 pounds) and 1.8 (thrust estimated to be 100
pounds). In both cases, it is shown that the swirled jet 1s approx-
imately one dB (sound intensity) noisier. At a given pressure
ratio the thrust between swirled and nonswirled is approximately
the same. Lu et al. have not given directivity plots for this case
but have presented spectra 70° from the downstream axis. Here we
estimate from their data a 5 db increase in intensity when the
Jet is swirled. To explain this result we have examined the sen-
sitivity of our directivity prediction to small changes 1n turbu-
lent initial conditions. Shown in Fig. 14, is the computed
directlivity which results when the initial specification of the
second-order velocity correlations aré Increased or decreased by
20%. It is not difficult to argue that the swirl vanes do in fact
increase the initial turbulence level, although an estimation of
the amount would be difficult. Also, it seems reasonable that
swirl vanes will alter the initial integral scale. However, this
effect was not investigated. Within the limitations which are
detailed above, these results do indicate that the Lu et al. cold
swirling jet does not offer any sound intensity reduction over
the nonrotating counterparts.

We have also made a simulation of the jet flowfield of a high
by-pass ratio jet engine (by-pass ratio 3 typical of a JT 15 D)
where the primary exhaust is swirled. We have simply added a by-
pass Jet flow around the simulation of the Lu et al. model jet above.
Here we have estimated initial conditions for the by-pass flow by
computing the fully developed pipe flow in an annular plpe to approx-
imate the exit conditions on the by-pass flow. In Figs. 15 and 16,
is shown the initial, as well as downstream, predicted profile for
a swirled and nonswirled primary flow. Note the initially high
turbulence level in the region of mixing between the primary and
by-pass flow and also the reduction of A in these regions. Again,
we note that the effect of swirl is to increase the decay rate of
the centerline axial velocity. Predicted directivity is shown in
Fig. 17. Here thrust was held constant for both swirled and non-
swirled cases at 113 pounds. Again, it is seen that swirl does not
offer any reduction in sound power radiated over the nonswirled
case.

As a final computation which demonstrates the general jet flow-

fields which can be studied using second-order closure modeling,

we have simulated a multitube suppressor. We have used nine
Gaussian jets with the initial turbulence specified using super-
equilibrium theory. These initial conditions were inputted into

a code named "WAKE" which is a nonaxisymmetric version of TDV.

WAKE is a fully elliptic computation in the cross plane and is
parabolic in the streamwise direction. The computed decay of axial
velocity is shown in isopleth form in Fig. 18. Isopleths of turbu-
lent intensity are also shown in Fig. 19. We have computed the
directivity of this jet and compared it with that predicted from
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an equal thrust, equal dlameter axisymmetric Gaussian Jet, using
TDV. The reduction of intensity Adb 1s shown in Fig. 20.

VI. THE EFFECT OF HEAT AND SWIRL ON
TURBULENT JET STRUCTURE

It is apparent that model predictlions show that swirl does
substantially alter the structure of a cold Jet but that substan-
tial reduction in the sound power radiated has not been computed
to occur. It i1s clear that this result 1s opposite of that ob-
tained by Schwartz!?® experimentally where swirl was imparted to
hot jets. Here, he has shown that by swirling the exhaust from
turbo-fan and turbo-jet engines, substantial reductlons in total
sound power radiated can be achieved with little loss of thrust.

In this section we propose a possible explanation of this dis-
crepancy based on the neglect of mean density gradients. Our ap-
proach is to again examine the superequilibrium limit of our
turbulent model including the effects of radial variation of den-
sity.

Consider the flow geometry shown in Fig. 21. To reduce the
algebraic manipulations, we will neglect streamwlse dependence on
all variables and seek only a radial balance between terms.
Furthermore, we will suppress the turbulence produced by the axial
velocity and only examine the production of turbulence by swirl
and radial density gradlients. This assumptlon again reduces the
algebraic complexity but still retains the swirl and radial den-
sity gradient production terms in the rate equations for the cor-
relations. When the Mach number i1s moderate and the superequili-
brium limit of the modeled rate eguations are taken, the rate
equations become
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3 = =2
u'u' _ V == ELEL v_
Qe =1x* b ou'vt + 2 =
3 (rV)
viv' _ _ r =757
R} - %K C r 7V P
w'w' _ 3 P
97K T IR '
(rV) = =2
u'v' _ r V == V- p'v!
a =x = - - u'u' + 2 FV'v + - —
P
A % o'u' = - p.u'u’ + E2 p'p! + 2 Y KA
r r '5 r
(V) _
A % piv? = - = r oTu’ - P, a'v’
bs % o'p! = - E'rp'u'
and
ol =\/U.'U.' + V'V' + W'W'

A,b,s are model constants which have the values 0.75 ,
0.125 and 1.8 , respectively. Lambda (A) is the integral scale
parameter in the turbulent model and has the dimensions of length.
Solution to the above system can be obtained by assuming

T = val(T, - 52

TVl = VVAZ(VE - 2)2 p'u' = RUA2E¥(Vf - g)

T = WiAA(T, - )2 57T = RS (T, - )
® = a7, - )2 57T = RRA%H.

avT = AT, - H®

and substituting Eq. (25) into Eq. (24), yielding
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QQ
N is agaln defined to be

N

and S

S

for Q

T%e solutions to Eqg.

Q

71— + 2SRU + LNUV

Q3
T - 2(1 + 2N)UV

Q3

I

2N(VV - UU) - UU + SRV
2NRV + SRR - UU

- UV - (1 + 2N)RU

is a Richardson number defined as

- RU (26)
Uu + VV + WW

¥,/ = v

;/(Vr - ;) (27)
Ef - v.2

e F—/(Vr - ;) (28)

(24) are lengthy and only the solutions
s UV and RU are displayed below.

2 (29)
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where

_Sfe . L N_ _
B = A(5 + bs) + 2 (1 + ON) + 16N° + 8N - 2

G
2
= S_ L S i .1
c = Az(u 5 bs) A{(16N + 8 (3+ 55 - %)
2 2 2N 2
+K'ﬁ}+A_§(1+2N)(16N + 8N - 2)
3
Q 1 1
e - rl:2+2_A+N<K+2]
Q +16N + 12N + +—(S+1+ 2N) (30)
2%-N(%-+ 2) - liUV
RU = - 1 i =
2 1 2N !
[AQ +su+b—s- +-A—(1+ 2N)_i (31)

Since Q2 must be positive definite, there is a relationship be-
tween Richar%son number and N for which Q2 0. On Fig. 22
are shown Q isopleths. As can be seen, self sustained turbu-
lence is possible only for those values of S and N which fall
below the 0 curve. Above this curve, turbulence is damped
by centrifugal effects of the swirling flow.

With the radial density set equal to zero (S = 0) , self-
sustained turbulence is possible if -0.68 < N < 0.18 as has been
shown by Donaldson and Bilanin.!* Simple parallel shear flow
corresponds to N = 0 . Here, the critical Richardson number above
which self-sustained turbulence is not possible is approximately
0.55 , which agrees with that found by Lewellen, Ref. 5.

In Figs. 23 and 24 are shown curves of constant UV and RU ,
respectively. As can be seen, RU < 0 as it must be to insure
that RR is positive definite (Eq. (26)).

The values of S8 and N which may be attained in a hot
swirling jet cover N < 0 and all S if both positive and nega-
tive density gradlents are allowed. Negative gradients might occur
in an advanced engine which exhausts hot gas through an annular
region. Therefore, it appears that the presence of swirl, coupled
with mean density gradients, can profoundly affect the ability of
the jet to produce turbulence. We, therefore, suggest that the
mechanisms which result in noise suppression by swirling the hot
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exhaust flow of a jet engine may be intimately related to the
modification of the turbulent stability of the jet.

VII. CONCLUSIONS

A first look has been made at using second-order velocity
correlations predicted from second-order closure turbulent trans-
port theory to predict the generation of aerodynamic sound. It
is suggested that second-order turbulent transport theory, in its
present form, does contain turbulent statistical quantities which
appear in several formulations of the aerodynamic sound generatilon
problem. It is also suggested that second-order closure transport
theory might be extended or modified to directly compute fluctua-
tions which appear explicitly as source terms in current aero-
dynamlc sound formulations.

Several calculations of complex jet flowfields have been
undertaken to illustrate the versatility of second-order closure
turbulent modeling. These computations include swirled and non-
swirled jets and a flowfield simulating exhaust from a multitube
nozzle. It has been shown, with second-order closure turbulent
transport theory coupled with Ribner's formulation of the aero-
dynamic sound generation problem, that swirling the exhaust of a
cold jet does not offer any appreciable sound power reduction over
a nonswirled equal thrust jet. It is suggested that the stabiliz-
ing/destabilizing effect present when the jet flow is hot and is
swirled, which is not included in our current model, may in fact
explain this apparent contradiction with measured data.
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